
Minimalistic guide to shell scripting syntax

In addition to being an interpreter of user commands, shell also provides a high-level programming

language.

#! Specifying a Shell
You can put a special sequence of characters on the first line of a file to tell the operating system which

shell should execute the file. Because the operating system checks the initial characters of a program

before attempting to exec it, these characters save the system from making an unsuccessful attempt. If

! are the first two characters of a script, the system interprets the characters that follow as the

absolute pathname of the utility that should execute the script. This can be the pathname of any

program, not just a shell. The following example specifies that bash should run the script:

#!/bin/bash

Invoking other programs
In the script you invoke different programs as you would invoke from the shell. For example, echo utility

takes multiple arguments and prints all these arguments to the screen.

In file: we

#!/bin/bash
echo you and me
run: ./we

Variables
You don't declare variables - you just start using them. An assignment statement begins with the

variable name, no space, an equals sign, again no space, and then the value to be assigned. To access

the values of variables, we use a command-line substitution which begins with a $.

we=you and me

we="you and me"

echo we

echo $we

The $VARIABLE syntax is a special case of the more general syntax ${VARIABLE}, in which the variable

name is enclosed by ${}. The braces insulate the variable name. Braces are necessary when

concatenating a variable value with a string.

Compare:

$ PREF=counter
$ WAY=$PREFclockwise
$ FAKE=$PREFfeit
$ echo $WAY $FAKE
Prints empty line, because variables $PREFclockwise and $PREFfeit are not initialized

Vs.

$ PREF=counter
$ WAY=${PREF}clockwise
$ FAKE=${PREF}feit
$ echo $WAY $FAKE
Prints: counterclockwise counterfeit

Substitutions
Shell is scanning for special tokens and substitutes them. "echo ~" – the "~" is substituted with your

home directory path name.

Some special tokens:

> #output redirection

< #input redirection

HOME

PATH

*, ? #file name wildcards

| #pipe

How to suppress substitutions
 backslashes suppress the special interpretation of an immediately-following character

 single quotes suppress the interpretation of just about everything inside them, except for other

single quotes (that is, there's no way to embed a single quote within single-quoted text)

 double quotes suppress the interpretation of most things inside them. The exceptions are

backquotes, backslashes (so you can put a double quote inside double-quoted text), and dollar

signs

person=alex
echo $person # alex

echo "$person" # alex
echo '$person' # $person

echo \$person # $person

Command Substitutions
Command substitution $(command) replaces a command with the output of that command.

echo $(ls -l)

Expressions
An expression is composed of constants, variables, and operators. bash accepts ((expression)) as a

synonym for let "expression" and expr with arguments, obviating the need for both quotation marks and

dollar signs.

Arithmetic expansion
Arithmetic expansion uses the syntax $((expression)), evaluates expression, and replaces

$((expression)) with the result. You can use $((expression)) as an argument to a command or in place of

any numeric value on a command line. You can use arithmetic expansion to display the value of an

expression or to assign that value to a variable.

echo There are $((60*60*24*365)) seconds in a non-leap year.

Arithmetic evaluation
Arithmetic evaluation uses the ((expression)) syntax, evaluates expression, and returns a status

code. You can use arithmetic evaluation to perform a logical comparison or an assignment.

((COUNT = COUNT + 1, VALUE=VALUE*10 +NEW))

Logical Evaluation (Conditional Expressions)
The syntax of a conditional expression is [[expression]] where expression is a Boolean (logical)

expression. The result of executing this builtin, like the test builtin, is a return status. You must surround

the [[and]] tokens with whitespace, and place dollar signs before the variables.

While loop
echo “Enter password”
read trythis
while [[“$trythis” != “secret”]]
do

echo “Sorry, try again”
read trythis

done
exit 0

Lists
Bash supports one-dimensional array variables. The subscripts are integers with zero-based indexing.

NAMES=(max helen sam zach)
echo ${NAMES[2]} #Sam
echo ${#NAMES[@]} #4 – array size

For loops
read yourname
for name in ${NAMES[@]}
do
 if [[yourname = name]]; then

echo "name exists"
exit 0

fi
done
echo "Name not found"

for ((c=1; c<=5; c++))
do
 echo "Welcome $c times"
done

Positional Parameters
The positional parameters comprise the command name and command line arguments. They are called

positional because within a shell script, you refer to them by their position on the command line.

$#: Number of Command Line Arguments

$0: Name of the Calling Program

$1 – $n: Command Line Arguments

The first argument on the command line is represented by parameter $1, the second argument by $2,

and so on up to $n. For values of n over 9, the number must be enclosed within braces. For example, the

twelfth command line argument is represented by ${12}.

In file: showargs

echo "$0 was called with $# arguments, the first is :$1:."

$./showargs a b c
./showargs was called with 3 arguments, the first is :a:.

Exit status
$ ls es #file es exists

es
$ echo $?
0 #success

$ ls xxx #file xxx does not exist
ls: xxx: No such file or directory
$ echo $?
1 #failure

